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LifeV project

Finite Element Library for the solution of PDEs

C++, object oriented

parallel and serial versions

distributed under LGPL

about 30 active
developers

CMCS – EPFL

E(CM)2 – Emory

MOX – Polimi

ESTIME– INRIA

Research code oriented to the development and test of new
numerical methods and algorithms
Aim: effective tool for solving complex engineering problems
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History

<2001 LifeI, LifeII, LifeIII: Fortran 2D finite element codes (CRS4,
Politecnico di Milano, CMCS)

2001 early development of LifeV at Politecnico di Milano, INRIA,
and EPFL (leaders A. Quarteroni, L. Formaggia, A. Veneziani,
J.F. Gerbau)

2006 development of the parallelism in LifeV. Inclusion of Trilinos
(G. Fourestey, S. Deparis).

2008 E(CM)2 – Emory University joins the project

2011 Migration to git, tribits and cmake
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Developers and target users

Research code oriented to the development and test of new
numerical methods and algorithms
Developers are:

Researchers

Post docs

PhD students

Target users are the developers themselves, master students, and
other researchers.
Medium term target is to make LifeV more accessible to external
users.
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Licence ans copyright

LifeV is distributed under the LGPL 3 by a consortium of the main
institutions involved.

Copyright (C) 2004, 2005, 2007 EPFL, Politecnico di Milano, INRIA Copyright (C)

2010 EPFL, Politecnico di Milano, Emory University Copyright (C) 2011,2012,2013

EPFL, Politecnico di Milano, Emory University

Access to the development repository is given to people that
accepts to transfer the copyright to the consortium. Authorship is
of course kept to the author.
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Examples of applications

Darcy Solver: FE spaces: P1 for the pressure and low order
Raviart-Thomas for the velocity.

Three phase flow in the liver

Cell culture in Orbitally Shaken Reactor (Bifluid, with level set
and stabilization)

Structural solver with non-linear and anisotropic materials

Electrical activity in the heart (mono- and bi-domain solvers)

Fluid-Structure interaction for vascular flows

Geometrical multiscale modeling for vascular flows

Integrated cardio-vascular simulations
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Development tools

TriBits and CMake

nightly builds in opt and debug modes

collaborative tool: Git

Redmine system + GitoLite http://cmcsforge.epfl.ch,

Google groups for mailing lists

Google app educational for lifev.org

Continuous distribution through GitHub
http://github.com/lifev/lifev
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Modules, aka mini-packages

LifeV is devided into modules, namely:

Core: Finite Element basics, mesh classes, time discretization,

BC interface: Boundary conditions

Darcy

Eta: assembly by expression templates

FSI: Fluid-Structure interaction

Heart

Level set

Navier Stokes

One D FSI: 1D arterial model

Structure

Zero dimensional

Multiscale

Electrophysiology (not yet distributed)

They represent specific features. There are dependencies among modules
Each module includes a specific testsuite
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Branch review scheme

Code submitted to the community comes as a branch to be
merged into master.
Before merging, the code is submitted for open review to the
developers. A specific reviewer is selected.

Review includes:

compliance with the coding guidelines

relevant tests

(code analysis with Valgrind)

list of reccomendations for further development (a todo list for
after merging)

Until now, review has been quite selective, we are aiming at a little
relaxation

Since January 2013 (Developers meeting), master is released on
GitHub.
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Why Trilinos (extract form Trilinos survey)

Were there alternatives to Trilinos that you investigated? If so,
what made you decide to use Trilinos?

Yes, the most competitive alternative was petsc. However we
found Trilinos more mature and with a larger set of tools (actually
packages). Trilinos allowed us a smooth switch to MPI and offers
interfaces to this API. It was also important that the source is
written in c++ and that the following tools are provided:

distributed sparse matrix data-structures

linear system solvers and preconditioners

parallel IO

generalized eigenvalue solvers.
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Trilinos’ most used features

Tools Epetra stack
Parallel linear algebra Epetra

Matrix tools and extensions EpetraExt
Graph operations Zoltan & Isorropia

Iterative linear solver AztecOO & Belos
Direct solvers Amesos

DD preconditioners Ifpack
Multi-level preconditioners ML

12/40



LifeV Finite Element Solver VMS

Parallel finite element loop

Initialize

Global mesh

Partition mesh
Mesh partitions

Assembly
Mesh partitions A b

Parallel GMRES
Mesh partitions A x b

Parallel output
Mesh partitions

x

Domain
decomposition

FE loop; build A, b

P , Ax = b-1
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E.g., Navier–Stokes equations
with G. Grandperring

Let Ω be a bounded domain in R3. The Navier–Stokes equations
for an incompressible viscous flow read:

∂
∂tu + u · ∇u− ν∆u +∇p = f in Ω× (0,T ]

∇ · u = 0 in Ω× (0,T ]
u = ϕ on ΓD × (0,T ]

ν ∂u
∂n − pn = 0 on ΓN × (0,T ]

u = u0 at t = 0

where ΓD and ΓN are the Dirichlet and Neumann parts of the
boundary respectively, u is the fluid velocity, p the pressure, ν the
kinematic viscosity of the fluid, f the external forces, and ϕ a given
function.
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Discretization

Time discretization using e.g. semi-implicit Euler scheme:

un+1−un

∆t + un · ∇un+1 − ν∆un+1 +∇pn+1 = fn+1 in Ω
∇ · un+1 = 0 in Ω

un+1 = ϕ on ΓD

ν ∂un+1

∂n − pn+1n = 0 on ΓN

FE discretization using P2 − P1 finite elements on tetrahedral
unstructured meshes:(

F (Un) BT

B 0

)(
Un+1

Pn+1

)
=

(
Gn+1(Un)

0

)
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Designing a preconditioner for HPC

Wish list:

1 The algorithms involved to build and apply the preconditioner
must be both weakly and strongly scalable.

2 The preconditioner should be optimal.

3 The preconditioner should be scalable in terms of number of
iterations.

4 The preconditioner should be robust with respect to the
physical parameter (e.g. viscosity ν).
⇒ This property ensures that the preconditioner handles a
wide range of Reynolds numbers; for vascular flows, the typical
Reynolds number in large arteries ranges from <e = 200 up to
<e = 4000 (ascending aorta).
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Classical preconditioners for N–S

SIMPLE

P−1
SIMPLE =

(
I − 1

α
D−1BT

0 1
α
I

)(
I 0

0 −S̃−1

)(
I 0
−B I

)(
F−1 0

0 I

)
,

where α ∈ (0, 1] is a damping parameter, S̃ = BD−1BT , and D is the
diagonal of F ,

Patankar, Spalding. A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. International
J. on Heat and Mass Transfer, 15:1787–1806, 1972.

Yosida

P−1
Yosida =

(
I −F−1BT

0 I

)(
I 0
0 −S−1

)(
I 0
−B I

)(
F−1 0

0 I

)
,

with S = ∆tBM−1
u BT .

Quarteroni, Saleri, and Veneziani. Analysis of the Yosida method for the incompressible Navier–Stokes equations. J. Math. Pures Appl.,
1999.

PCD

P−1
PCD =

(
F−1 0

0 I

)(
I −BT

0 I

)(
I 0
0 −A−1

p

)(
I 0
0 Fp

)(
I 0
0 M−1

p

)
.

Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput.
Appl. Math., 2001.

Elman, Tuminaro. Boundary conditions in approximate commutator preconditioners for the Navier–Stokes equations. Electron. Trans.
Numer. Anal., 2009. 17/40
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Approximate preconditioners for N–S

Approximate SIMPLE (aSIMPLE)

P−1
aSIMPLE =

(
I − 1

α
D−1BT

0 1
α
I

)(
I 0

0 −ˆ̃S−1

)(
I 0
−B I

)(
F̂−1 0

0 I

)
,

where α ∈ (0, 1] is a damping parameter and S̃ = BD−1BT .

Approximate Yosida (aYosida)

P−1
aYosida =

(
I −F̂−1BT

0 I

)(
I 0

0 −Ŝ−1

)(
I 0
−B I

)(
F̂−1 0

0 I

)
,

with S = ∆tBM−1
u,`B

T .

Approximate PCD (aPCD)

P−1
aPCD =

(
F̂−1 0

0 I

)(
I −BT

0 I

)(
I 0

0 −Â−1
p

)(
I 0
0 Fp

)(
I 0

0 M̂−1
p

)
.

where ˆ denotes the use of a preconditioner to approximate the inverse
Deparis, Grandperrin, Quarteroni. Approximate preconditioners for the Navier-Stokes equations in hemodynamic simulations. Computers
& Fluids, vol. 92, p. 253-273, 2014.
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Inverses approximation
Details on the preconditioners

F̂−1 and (BM−1
u,`B

T )−1 are replaced by a 2-level Schwarz
preconditioner; the first level is applied without overlap with a
coarse grid correction. The subdomain problems are solved
using exact factorization.

Â−1
p and (BD−1BT )−1 are replaced by a V-cycle AMG with 2

sweeps of symmetric Gauss-Seidel as smoother (presmoothing
only), exact factorization for the coarsest level.
The AMG is implemented in the ML package in Trilinos.

Sala. An Object-Oriented Framework for the Development of Scalable Parallel Multilevel Preconditioners”, ACM Transactions on
Mathematical Software, 2006.

M̂−1
p is replaced by the inverse of the diagonal lumped mass

matrix.
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Numerical results
Simulation protocol

Linear problem solved at each timestep with right
preconditioned GMRES;

Stopping criteria based on the residual scaled by the right hand
side:

‖b−Axk‖2 ≤ 10−6‖b‖2,

where ‖ · ‖2 denotes the `2 norm of the vector of the nodal
finite element solution.

GMRES is never restarted.
The simulations were carried out using LifeV (www.lifev.org)
on the Monte Rosa Cray XE6 at the CSCS, Lugano,
Switzerland.

Number of nodes 1496
Number of processors per node 2x16-core AMD Interlagos
Processors frequency 2.1 GHz
Processors shared memory 32 GB DDR3
Peak performance 402 Teraflop/s.
Network Gemini 3D torus
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Flow in a rigid vessel

All our preconditioners are tested and tuned on a benchmark

relevant for medical applications (ν = 0.035 cm2

s , <e = 400).

Mesh Velocity DoFs Pressure DoFs hmin hav hmax

Coarse 597,093 27,242 0.015 0.035 0.059
Medium 4,557,963 199,031 0.005 0.018 0.051
Fine 35,604,675 1,519,321 0.0026 0.0097 0.0277
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Flow in a rigid vessel (coarse grid)

u = 0 on Γwall ,
u = ϕfluxn on Γin,

ν ∂u
∂n − pn = 0 on Γout ,
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Time to build the preconditioners

Coarse Medium Fine
max. 1024 cores max. 2048 cores max. 8192 cores

The time to build the different preconditioner is superlinear with respect to
the number of cores due to the computation of the local LU factorizations.

When the assembly time goes below a given threshold, the communication
time overcomes the computation time for aPCD, aSIMPLE, and aYosida.

The AS preconditioner is clearly slower to build.
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Number of GMRES iterations

Coarse Medium Fine
max. 1024 cores max. 2048 cores max. 8192 cores

aSIMPLE is scalable (flat curves).

With aPCD, the iterations count is moderately increasing

Problems of convergence are encountered with coarse mesh and aYosida.

GMRES converges slower when the AS preconditioner is used.
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Time to solve the linear system

Coarse Medium Fine
max. 1024 cores max. 2048 cores max. 8192 cores

Using the coarse mesh, the AS prec. is not strongly scalable.

Under ∼ 1 s. the communication time dominates the wall time (coarse
mesh)

Using the medium and fine meshes, the preconditioners are strongly
scalable.
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Variational MultiScale modeling ([Baziliev et al. 2007])
L. Dede and D. Forti

Variational formulation:

We define V = (H1
0 (Ω))3, Q = L2

0(Ω) and V = V ×Q.

Find U = {u, p} ∈ (0,T ]→ V such that ∀W = {w, q} ∈ V

B(W,U) = B1(W,U) + B2(W,U,U) = (W,F)

being:

B1(W,U) = (w, ut) + (∇sw, 2ν∇su) + (q,∇ · u)− (∇ · w, p)

B2(W,U,U) = −(∇w, u⊗ u)

(W,F) = (w, f)
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Variational MultiScale modeling

Scale separation

Consider a direct-sum decomposition of V into coarse-scale and fine-scale
components:

V = V̄ ⊕V ′, (1)

being V̄ a finite dimensional subspace (e.g. Finite Elements). From (1), with
the aid of a projector P̄, we consider:

U = Ū + U′,

with:

Ū = P̄U,

U′ = (I − P̄)U.
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Variational Multiscale modeling

The original problem becomes:

Find Ū ∈ V̄ and U′ ∈ V ′ such that:

(coarse-scale problem) B(W̄, Ū + U′) = (W̄,F) ∀ W̄ ∈ V̄
(fine-scale problem) B(W′, Ū + U′) = (W′,F) ∀W′ ∈ V ′

being:

B(W̄, Ū + U′) = B1(W̄, Ū) + B1(W̄,U′)

+B2(W̄, Ū, Ū) + B2(W̄, Ū,U′)

+B2(W̄,U′, Ū) + B2(W̄,U′,U′),

and

B(W′, Ū + U′) = B1(W′, Ū) + B1(W′,U′)

+B2(W′, Ū, Ū) + B2(W′, Ū,U′)

+B2(W′,U′, Ū) + B2(W′,U′,U′)
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Variational Multiscale modeling

Approximation of the fine scale:

We aim at solving only the problem defined for the coarse-scale:

B(W̄, Ū + U′) = (W̄,F) ∀ W̄ ∈ V̄,

which depends on the fine-scale component U′.
Rather than solving explicitly for the fine-scale, U′ is approximated as:

U′ ' F ′(Ū,Res(Ū)),

where F ′(·, ·) depends only on coarse scale components and Res(Ū) is the
coarse-scale residual.

Variational Multiscale model:

Find Ū ∈ V̄ such thata:

B(W̄, Ū + F ′(Ū,Res(Ū))) = (W̄,F) ∀ W̄ ∈ V̄
aWe redefine Ū as the new coarse-scale component.
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Variational Multiscale modeling

Let V̄ be the finite dimensional space obtained by Finite Elements, i.e. the
coarse spaces with the unknown and test variables.

Approximation of U′

U′ ' −τRes(Uh), with:

τ =

(
τM I3 03

0T
3 τC

)
and Res(Uh) =

(
rM (uh, ph)
rC (uh)

)
.

The residuals rM (uh, ph) and rC (uh) read:

rM (uh, ph) = uh t + uh · ∇uh +∇ph − ν∆uh − f,

rC (uh) = ∇ · uh.

The stabilization parameters τM and τC read (element-wise):

τM =

(
4

∆t2
+
‖uh‖2

h2
+ C

ν2

h4

)−1/2

, τc =
(τM

h2

)−1

,

being h the diameter of the mesh element and ∆t the characteristic timestep.
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Variational Multiscale modeling

Semi-discrete formulation:

Find Uh such that ∀Wh ∈ V̄h:

(wh, uht)−(∇wh, uh ⊗ uh)− (∇ · wh, ph) + (∇swh, 2ν∇suh) + (q,∇ · uh)

{
+(uh · ∇wh, τMrM (uh, ph)) + (∇qh, τMrM (uh, ph))

+(∇ · wh, τC rC (uh)){
+(uh · (∇wh)T , τMrM (uh, ph))

−(∇wh, τMrM (uh, ph)⊗ τMrM (uh, ph))

= (wh, f)

SUPG

LES

VMS
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Implementation aspects in LifeV

Packages used: Core, ETA, Navier-Stokes

Highlights on the implementation of VMS-BDF

Find Uh such that ∀Wh ∈ V̄h:

(wh,
α

∆t
un+1

h )− (∇wh, u
n+1
h ⊗ u∗,n+1

h )

− (∇ · wh, p
n+1
h ) + (∇swh, 2ν∇sun+1

h ) + (qh,∇ · un+1
h )

{
+(un+1,∗

h · ∇wh, τMrn+1
M ) + (∇qh, τMrn+1

M )

+(∇ · wh, τC rC (un+1
h )){

+(u∗n+1
h · (∇wh)T , τMrn+1

M )

−(∇wh, τMr∗,n+1
M ⊗ τMrn

M )

= (wh, f) + (wh,
un,rhs

h

∆t
)

SUPG

LES

VMS
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(un+1,∗
h · ∇wh, τMrn+1

M ) =

(un+1,∗
h · ∇wh, τM (α/∆t un+1

h − ubdf
h /∆t︸ ︷︷ ︸
NSrhs(0)

+un+1,∗
h · ∇un+1

h + ∇pn+1
h︸ ︷︷ ︸

NSmatrix(0,1)

−ν∆un+1
h ))

integrate(
elements(M_uFESpace.mesh()),
M_uFESpace.qr(),
M_ETUFE, // test w -> phi_i
TAU_M/value(M_dt)*dot(value(M_ETUFE,uExtr)*grad(phi_i),value(M_ETUFE,uBdf))
) >> NSrhs->block(0);

integrate(
elements(M_uFESpace.mesh()),
M_uFESpace.qr(),
M_ETUFE, // test w -> phi_i
M_ETPFE, // trial p -> phi_j
TAU_M*dot(value(M_ETUFE,uExtr)*grad(phi_i),grad(phi_j))
) >> NSmatrix->block(0,1);
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ML preconditioner for VMS

Preconditioner

We used MultiGrid preconditioners from the ML package of Trilinos

Default parameters setting: NSSA, nonsymmetric smoothed aggregation
variant for highly nonsymmetric operators

max levels = 3

cycle applications = 3

pde equations = 4

smoother: Gauss-Seidel, 3 sweeps

aggregation: type = Uncoupled-MIS

Preconditioner built on the system matrix

Solver

We used the GMRES method through Belos from Trilinos, tolerance = 10−8

(on the relative residual criterion), right-preconditioning.
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Numerical results

Benchmark problem

We consider the flow past a squared cylinder [Koobus and Farhat, 2004]
(available experimental data). Reynolds = 22000.

 uIN (t) =
t

tR
UIN , t <= tR

uIN (t) = UIN , t > tR

# dofs = 1,323,056
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Vortex structures - Lambda 2 criterion
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Results - Validation

2 4 6 8 10 12 14
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]

c̄D rms(cD ) Strouhal
Experimental data [Rodi et al, 1997] [1.66 - 2.77] [0.1 - 0.27] [0.07 - 0.15]
VMS-BDF 2.04 0.113 0.146
[Koobus and Farhat, 2004] 2.1 0.18 0.136
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Results
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Simulations were run on the cluster Bellatrix at the EPF Lausanne (each node with 2
Sandy Bridge processors running at 2.2 GHz, with 8 cores each, 32 GB of RAM,

Infiniband QDR 2:1 connectivity, and GPFS filesystem).
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Conclusions and next steps

Conclusions:

Implementation of fluid solver based on VMS-BDF

Efficient semi-implicit time-advancing scheme

Validation towards a benchmark problem

Thanks to Trilinos solvers and ML preconditioner achieved good parallel
performances

Next steps:

Full analysis of turbulence’s scales

Scalability study on finer meshes

Performance analysis and comparison with a fully implicit solver (nonlinear
iterations)
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