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Introduction

In several instances Partial Differential Equations (PDEs) are defined
on lower dimensional manifolds with respect to the hosting space
(e.g. surfaces in 3D and curves in 2D/3D).

Applications are e.g. in fluid dynamics (thin films), structural
problems (beams, shells), biology (biomembranes), image processing,
and electromagnetism.

The numerical approximation of the PDEs generally requires the
generation of an approximated geometry compatible with the analysis,
leading to geometrical error and inconsistency. Specifically, the
approximation of the curvature may significantly affect the total
numerical error.
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Introduction

Several geometries of practical interest are exactly represented by
B–splines or NURBS; e.g. conic sections (sphere, cylindrical shell,... ).

IGA is an approximation method for PDEs based on the isoparametric
concept for which the same basis functions used for the geometrical
representation are then also used for the numerical approximations of
the PDEs.

[Hughes, Cottrell, Bazilevs, 2005]

We consider the numerical approximation of PDEs on lower
dimensional manifolds (surfaces) by means of Isogeometric Analysis
(IGA). Specifically, we consider NURBS–based IGA.
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Surfaces represented by NURBS: geometrical mapping

We consider a surface Ω ⊂ Rd represented by a geometrical mapping from
the parameter space Rκ into the physical space Rd, with d > κ ≥ 1, as:

x : Ω̂→ Rd, ξ → x(ξ),

being Ω̂ ⊂ Rκ the parameter domain.

Examples of NURBS mappings:
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Surfaces represented by NURBS: geometrical mapping

The geometrical mapping represented in terms of NURBS reads:

x(ξ) =

nbf∑
i=1

R̂i(ξ)Pi,

where:

R̂i(ξ) are the NURBS basis functions defined in the parameter domain Ω̂;

Pi ∈ Rd are the control points in the physical space for i = 1, . . . , nbf .

The NURBS basis functions R̂i(ξ) are defined from B–splines basis
functions N̂i(ξ) and weights wi ∈ R as:

R̂i(ξ) :=
wi

nbf∑
i′=1

wi′ N̂i′(ξ)

N̂i(ξ) for i = 1, . . . , nbf .

Conic sections can be represented by NURBS basis functions with
appropriate weights.
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Surfaces represented by NURBS: conic sections

Example: cylinder surface represented by NURBS basis functions.
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Surfaces represented by NURBS: geometrical mapping

Properties of the geometrical mapping x : Ω̂→ Rd:

F̂ : Ω̂→ Rd×κ, ξ → F̂(ξ), F̂i,α(ξ) :=
∂xi
∂ξα

(ξ),

Ĝ : Ω̂→ Rκ×κ, ξ → Ĝ(ξ), Ĝ(ξ) :=
(

F̂(ξ)
)T

F̂(ξ),

ĝ : Ω̂→ R, ξ → ĝ(ξ), ĝ(ξ) :=

√
det
(

Ĝ(ξ)
)
.

We assume that the geometrical mapping x : Ω̂→ Rd is “sufficiently”
smooth, e.g. C1(Ω̂), and invertible a.e. in Ω̂ (ĝ(ξ) > 0 a.e. in Ω̂).
Therefore:

φ(x) = φ̂(ξ) ◦ x−1(ξ),

where φ̂(ξ) := φ (x(ξ)).
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Surfaces represented by NURBS: functions and operators

By using the geometrical mapping, the gradient on the manifold can be
written as:

∇Ωφ(x) =
[
F̂(ξ) Ĝ−1(ξ)∇̂φ̂(ξ)

]
◦ x−1(ξ),

where ∇̂φ̂ : Ω̂→ Rκ is the gradient operator in the parameter space.

We introduce the Laplace–Beltrami operator ∆Ωφ(x) := ∇Ω · (∇Ωφ(x))
associated to the manifold Ω for a function φ ∈ C2(Ω) and write it using
the geometrical mapping as:

∆Ωφ(x) =

[
1

ĝ(ξ)
∇̂ ·
(
ĝ(ξ) Ĝ−1(ξ) ∇̂φ̂(ξ)

)]
◦ x−1(ξ).

Finally, the differential dx (dΩ) reads dx = ĝ(ξ) dξ (dΩ = ĝ(ξ) dΩ̂).
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A Model Problem: Laplace–Beltrami

We consider the second order Laplace–Beltrami problem defined on the surface Ω:

−µ∆Ωu = f in Ω,

u = 0 on ΓD,

µ∇Ωu · nΓ = 0 on ΓN ,

where µ > 0, f ∈ L2 (Ω), and Γ ≡ ∂Ω is the boundary of Ω (if meas (Γ) > 0)

with ΓD ∪ ΓN ≡ Γ and
◦
ΓD ∩

◦
ΓN= ∅, and nΓ its unit normal vector.

The Laplace–Beltrami problem in weak form reads:

find u ∈ V : a(v, u) = q(v) ∀v ∈ V,

where: a(v, w) :=

∫
Ω

µ∇Ωv · ∇Ωw dΩ, q(v) :=

∫
Ω

v f dΩ, and

V :=
{
v ∈ H1(Ω) : v|ΓD

= 0
}

.
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A Model Problem: Laplace–Beltrami

We recast the problem in the parameter domain Ω̂ with the geometrical
mapping (“pull–back”) and solve it by means of Galerkin NURBS–based
IGA:

find ûh ∈ V̂h : â(v̂h, ûh) = q̂(v̂h) ∀v̂h ∈ V̂h,

where V̂h := V̂ ∩ N̂h, with the NURBS space N̂h := span
{
R̂i(ξ)

}nbf

i=1
,

V̂ :=
{
v̂ ∈ H1(Ω̂) : v̂|Γ̂D

= 0
}

and

â(v̂, ŵ) :=

∫
Ω̂
µ ∇̂v̂ ·

(
Ĝ−1 ∇̂ŵ

)
ĝ dΩ̂,

q̂(v̂) :=

∫
Ω̂
v̂ f̂ ĝ dΩ̂,
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High–order Laplace–Beltrami problems

We consider the biharmonic problem defined on the surface Ω:

µ∆2
Ωu = f in Ω,

u = 0 on ∂Ω,

µ∇Ωu · nΓ = 0 on ∂Ω,

where ∆2
Ω := ∆Ω∆Ω is the fourth–order bilaplacian operator

and the triharmonic problem defined on the surface Ω:

−µ∆3
Ωu = f in Ω,

u = 0 on ∂Ω,

µ∇Ωu · nΓ = 0 on ∂Ω,

∆Ωu = 0 on ∂Ω,

where ∆3
Ω := ∆Ω∆Ω∆Ω is the sixth–order trilaplacian operator.
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A priori Error Estimation: uniform h–refinement

Let us consider a well-posed scalar elliptic PDE of order 2m, m ≥ 1, in a
domain Ω ∈ Rd described by NURBS, in weak form:

find u ∈ V : a(u, v) = F (v) ∀v ∈ V,

where V ⊆ Hm(Ω) is such that its functions satisfy the homogeneous
counterpart of the essential boundary conditions.

Theorem

For an elliptic PDE of order 2m, m ≥ 1, let σ ∈ N s.t. 0 ≤ σ ≤ m and
F ∈ H−σ(Ω). Let u ∈ Hr(Ω), r ≥ m, be the exact solution and uh the
approximate solution obtained with NURBS-based IGA. Then:

‖u− uh‖Hσ(Ω) ≤ Cshapeh
β ‖u‖Hr(Ω) ,

where β := min {δ − σ, 2(δ −m)}, with δ := min {r, p+ 1}.

[Tagliabue, Dedè, Quarteroni, 2014]
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IsoGlib: overview

Framework for solving problems by means of NURBS-based IGA in
the framework of the Galerkin method.

2D and 3D surface geometries, described by means of B-Splines and
NURBS.

High–order surface differential operators.

Different time discretization methods with time–step adaptivity
schemes.

Local transformation of basis functions, e.g. to handle periodicity and
closed surfaces.

Support for geometric PDEs (in progress).

Goal: maximum flexibility (applications include ADR problems,
elasticity, Navier-Stokes, Cahn–Hilliard, electrophysiology simulations,
etc...)
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IsoGlib: overview

Mesh generation and manipulation tools available from Matlab;
libraries and applications for solution of the problems written in C++.

Easy interface to simplify the integration of the library within other
applications and frameworks (LifeV for example).

Relying on external linear algebra packages to solve the systems.

Interface independent from the chosen package.
However, the only back-end currently supported is Trilinos.

Different levels of “caching” of internal quantities to speed-up certain
computations.
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IsoGlib: periodicity

When coping with closed surfaces or conic sections and global
Cp−1-continuity is desired, periodicity of the basis functions must be
enforced.
IsoGlib automatically handles periodicity conditions:

constraints among the dofs enforced by master–slave relations across
borders and internal “C−1 lines”
local linear transformation of basis functions
(transformations automatically calculated based on local mesh
properties)

periodic basis functions, p = 2, C1–continuous
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Numerical Results: 4th order Laplace–Beltrami Problem

Numerical approximation of the biharmonic PDE
on a (closed) cylinder:

Errors in norms H2, H1, and L2 vs h:

p = 2, C1–continuous p = 3, C2–continuous
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Numerical Results: 6th order Laplace–Beltrami Problem

Numerical approximation of the triharmonic PDE
on a (closed) cylinder:

Errors in norms H2, H1, and L2 vs h:

p = 3, C2–continuous p = 4, C2–continuous
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Cahn–Hilliard Equation

Let Ω be a surface in R3. A binary mixture is contained in Ω and

u : Ω× [0, T )→ R denotes the concentration of one of its components. The

Cahn–Hilliard equation on a closed surface reads:

∂u

∂t
(t) = ∇Ω ·

(
mc∇Ω

(
dΨ̃

du
(u(t))

))
in Ω× (0, T ),

u(0) = uin in Ω× {0}.

The two phases evolve in time, yielding the minimization of the free energy
functional Ψ̃(t) and conservation of mass M(t) =

∫
Ω
u(t) dΩ =

∫
Ω
uin dΩ:

Ψ̃(t) =

∫
Ω

(Ψc(u(t)) + Ψs(u(t))) dΩ,
dΨ̃

du
(u) = Ψc,u(u)− λ∆Ωu,

Chemical energy Surface energy Mobility
Ψc(u) = u2(1− u)2 Ψs(u) = 1

2 λ |∇Ωu(t)|2 mc = m0u(1− u)

and we have that dΨ̃(t)/dt ≤ 0, dM(t)/dt = 0.

[Liu, Dedè, Evans, Borden, Hughes, 2013]
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Numerical Results: Cahn–Hilliard Equation

Phase transition on a sphere and a thorus for volume fraction
vf = M(0)/|Ω| = 0.5.

Solved with NURBS–based IGA using basis functions of degree p = 2 and

parametrically C1–continuous.
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Phase–field Crystal Equation

Nonlinear time-dependent 6th–order PDE describing the crystal growth
inside a two-phase liquid system at interatomic length scales and diffusive
time scale, under mass conservation. The equation for the atomistic
density u reads:

∂u

∂t
= ∆Ω

(
φ (u) +Dk4u+ 2Dk2∆Ωu+D∆2

Ωu
)

in Ω× (0, T ),

u(0) = uin in Ω× {0}.

where φ (u) = − ε
2u

2 − g
3u

3 + 1
4u

4, k and D are positive numbers, ε and g
are positive physical constants.

[Gómez, Nogueira, 2012]
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Numerical Results: Phase–field Crystal Equation

Numerical results on the plane and on a quarter of a cylindrical shell:

Solved with NURBS–based IGA using basis functions of degree p = 3 and

parametrically C2–continuous.
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Conclusions

NURBS–based IGA provides a “natural” framework for the spatial
approximation of PDEs on surfaces.

High–order PDEs (order 2k, with k > 2) on surfaces can be solved
with NURBS–based IGA by using smooth (Ck−1–continuous) and
periodic basis functions.

The current implementation in IsoGlib is a starting base:

High–order surface operators are needed to solve some problems of
interest, like geometric PDEs with high–order flows.
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