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Is implicit hard?

PDE people know little about time integrators and solvers

Lots of misconceptions

Implicit time integration smears the solution

Implicit is less accurate

Need same order in space and time

Implicit is hard

Well...

True: Implicit offers lots of opportunities to do things wrong

Solution: Let TEMPO (or SUNDIALS) help you with that!
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Unsteady flow problems

Figure: Hurricane Katrina, NASA, PD; Lillgrund Offshore windfarm, Mariusz
Padziora, CC-by-sa 3.0 via Wikimedia Commons; Gas Quenching, Steinhoff
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Mathematical setting

Time dependent nonlinear systems of PDEs

Method of Lines

Possibly discretized using high order methods in space

Thus initial value value problem

ut = f(u), u(t0) = u0

Here, u is large, possibly a hundred millions

f is nonlinear with a sparse block Jacobian

Problem is typically stiff.

→ implicit time integration necessary.
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Aim: Parallel low storage Solver

Form of equation is independent of
precise time integration scheme

u = α∆tf(u) + ψ.

→ Need for fast low storage parallel
scaling solvers

Preconditioned inexact Jacobian-Free
Newton-Krylov (JFNK)

Aim: Library that does all this, given an
IVP

Figure: Cray Hermit in
Stuttgart; Bild: ThE cRaCkEr,
CC-by-sa 3.0, via Wikimedia
Commons
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Implicit Time Integration

Large stability region required: A-stable
methods!

Unsteady problem: Higher order and
time adaptivity.

BDF often used, but does not fit the
profile.

Bijl et al (01,02): ESDIRK methods
competitive!

One explicit and subsequent backward
Euler steps.

Time adaptivity easy.

Figure: DG discretization,
Re=100, 4th degree polynomial
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One step methods

Advantages: No starting procedure necessary, no problems with
change in properties of rhs (e.g. grid adaptivity)

ESDIRK, SDIRK

Consist of several steps of implicit Euler with different time step sizes
and starting vectors

Rosenbrock

Linearized SDIRK

Linear systems thus have same structure as for SDIRK, ESDIRK
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Time adaptivity

Explicit: Time step bounded by stability

Implicit: Time step bounded by accuracy

Time adaptivity crucial for efficiency of code

Error estimate easy at low cost using embedded methods

Several time step selectors implemented:

Standard I controller with limiters

PI controller PI.4.2

PC11

Digital Filter based, H211PI (Söderlind ’06)
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Inexact Jacobian-free Newton-Krylov

Inexact Newton method from Eisenstat/Walker ’96

Allows quadratic convergence with very coarse linear system solves

Solve systems using Krylov method, e.g. GMRES

Krylov methods don’t need Jacobian, only matrix vector products

Approximate ∂f
∂uq by finite differences:

Aq =
∂f(u(k))

∂u
q ≈ f(u(k) + εq)− f(u(k))

ε
.

Immense flexibility

Method is quadratically convergent in large radius!

Means that crucial function is the right hand side f(u)

Low storage solver there
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Feedback-Loops for DIRK scheme

Given error tolerances τ , initial time t0 and time step size ∆t0
For i = 1, ..., s

For k = 0, 1, ... until termination criterion with tolerance τ/5 is
satisfied or MAX NEWTON ITER has been reached

Determine Eisenstat-Walker relative tolerance
Solve linear system using preconditioned GMRES

If MAX NEWTON ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Note: Puts additional bound on time step via nonlinear solver
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Preconditioning

Big issues with regards to low memory and parallel

Two options available

First: Compute and store the jacobian and use it to compute a
preconditioner

Read: ILU

Needs: Function to compute the Jacobian, does the rest itself

Sparse Block Matrix class available

Second: Just provide a function pointer that has a vector as in and
output and represents the preconditioner

Read: Multigrid
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Development so far

Started from the DLR-TAU-Finite-Volume solver for steady flows as
done in the nineties by Thomas Sonar, Andreas Meister and others

Extended to unsteady problems by me ten years later

Technology for my habilitation thesis “Numerical Methods for the
Unsteady Compressible Navier-Stokes Equations”

Implemented principles in other codes as well myself, e.g. UFLO
(Jameson; Stanford), HALO (Gassner, Munz; U Stuttgart, Cologne)

Got tired of that → Library

Lots of help from students with money from DFG (SFB TRR 30)

Subversion repository and redmine instance at U Kassel
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Code framework

Basic data structure: Vector

Currently our own vector class

Question: Should we use a specific other class?

PETSc class? Blitz++?

Uses function pointer to represent right hand side

Used in time integration, Newton and Krylov solver

Two function pointers to represent IMEX
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Classes and structures

Set all params and function pointers needed in struct
TEMPO time integrator

Pass this to constructor of Time Integration class

One separate constructor for each type of time integration

Sets up all vectors etc.

Own classes for JFNK, Krylov stuff

Actual call is perform timestep
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Alternatives

SUNDIALS

Hindmarsh et. al., US National Labs

Uses adaptive time step and order in BDF setting

Very similar mathematics otherwise

ARKOde

Additive RK methods, soon to be part of SUNDIALS

Need to check it out!

TEMPO: +Rosenbrock, computationally more stable
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Problems

Copyright

Origin of TEMPO: In house Flow solver

Origin of In house flow solver: TAU-Code of the 90s

Causes hassle now. And is hassle in the first place!

Programming skills

In my environment, I’m probably the most skilled coder

I’m good, but not great at all

Students don’t know pointers, libraries, Makefiles, version control,
templates, parallel stuff...

Need more Scientific Computing education!
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Efficiency of JFNK

Figure: Relative errors (left) and relative residuals (right).
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Efficiency of JFNK

JFNK-FT JFNK-EW Newton-type-FT Newton-type-EW

3.0 4.1 0.7 0.9

Table: Upper bounds of convergence radius for Shu vortex problem in terms of
CFL numbers. FT stands for a fixed tolerance, EW for Eisenstat-Walker.
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Simulation: Flanged Shaft

Figure: Pressure contours after 5 seconds. Left: Zoom on region around lower
tube and shaft. Right: Zoom on region around upper tube and shaft.
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Efficiency of Time Integration schemes
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Figure: Adaptive time stepping: accuracy and computational efficiency for
different time integration schemes for the cooling of a flanged shaft test case
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Summary and Outlook

TEMPO solves stiff problems

ESDIRK, SDIRK and Rosenbrock

Jacobian-free framework

Time adaptivity

Efficiency from smart choices of tolerances

Interface: Function pointer with in and out vector

Next up: Copyright, then publish library

Soon: Stage value extrapolation for starting guess in Newton

Later: Output for videos via Dense Output Formulas
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