# Adaptive solution strategies for coupled porous media flow / free flow systems 

 PDESoft 2014 HeidelbergC. Grüninger, T. Fetzer, B. Flemisch, and R. Helmig July 16, 2014

Department of Hydromechanics and Modelling of Hydrosystems University of Stuttgart

Coupling free flow / porous-medium flow
General idea


## free flow, Navier-Stokes

1 phase, 2 components, temperature
sharp interface
porous-medium / Darcy flow
2 phases, 2 component, temperature


## ": Coupling free flow / porous-medium flow

Applications


Potash evaporation ponds


Freeze-drying


Salinization in California

## Stokes / Darcy coupling

- Coupling of Stokes and Darcy [Mosthaf et al. 2011, Baber et al. 2012]
- 2 phases, 2 components, temp. / 1 phase, 2 components, temp.
- box scheme, implicit Euler
- assemble in single matrix, Newton, SuperLU
- oscillations with Navier-Stokes


In collaboration with Dani Or, ETH Zurich

## Navier-Stokes / Darcy coupling

Schemes

conservative coupling


## Navier-Stokes / Darcy coupling

Coupling
Continuity of normal stresses

$$
p^{\mathrm{pm}}=p^{\mathrm{ff}}+n_{\Gamma}\left(\varrho v v^{\top}-\varrho \nu \nabla v\right)^{\mathrm{ff}} n_{\Gamma}
$$

Continuity of normal mass fluxes

$$
v^{\mathrm{pm}} n_{\Gamma}=v^{\mathrm{ff}} n_{\Gamma}
$$

Beaver-Joseph-Saffman condition

$$
\begin{aligned}
0 & =\left(\alpha_{\mathrm{BJ} \jmath} v+\frac{\sqrt{t_{\Gamma, i}^{\mathrm{\top}} K t_{\Gamma, i}}}{\nu \varrho} \tau n_{\Gamma}\right)^{\mathrm{ff}} \cdot t_{\Gamma, i} \\
& =\left(\alpha_{\mathrm{B} J} v+\sqrt{t_{\Gamma, i}^{\top} K t_{\Gamma, i}} \nabla v n_{\Gamma}\right)^{\mathrm{ff}} \cdot t_{\Gamma, i}
\end{aligned}
$$



## " Navier-Stokes / Darcy coupling

Models and Software


## Navier-Stokes, 2c, ni

PDELab: 1 phase (2 components, temp., turbulence models)

Coupling
dune-multidomaingrid, -multidomain

Darcy, 2p, 2c, ni
PDELab: 1 phase
(DuMu: 2 phases, 2 component, temp.)

Navier-Stokes / Darcy coupling


No-flow
Test case from [Kanschat, Rivière 2010]


Pressure


Velocity

## Current status

- Compare with analytic solution [Chidyagwai, Rivière 2011]
- Physical laws for 2 components and temperature in Navier-Stokes
- Coupling for components and temperature
- SuperLU limits problem size
- Algebraic and $k-\varepsilon$ turbulence models

Possible speed-up by adaptivity
Different mesh sizes


- Coarser mesh for Darcy sufficient
- Couple with a mortar method
- Exists for Stokes / Darcy code [Baber unpublished]

Possible speed-up by adaptivity
Multi time stepping

- Calculate free flow with smaller time steps $\Delta t$
- Calculate complete system with with $\Delta T$
- Unclear how conserve mass / energy
- Stokes / Darcy with 1 phase, linear [Rybak, Magiera 2014]



## Possible speed-up by adaptivity

Decouple linear systems
Decouple linear systems using Schur complement [Discacciati, Quarteroni 2004]

$$
\begin{aligned}
A x+B y & =f \\
C x+D y & =g \\
\left(D-C A^{-1} B\right) y & =g-C A^{-1} f \\
A x & =f-B y
\end{aligned}
$$

Only invert systems $A$ and $D-C A^{-1} B$

- Coupling: free flow and porous-medium flow
- Navier-Stokes: mass and momentum balance equations
- Multiple equations: mass balance equations and temperature / components


## Validation and Verification

Wind tunnel experiments in collaboration with Kate Smits, Colorado School of Mines


Direct numerical simulation courtesy of Wang et. al., iRMB TU Braunschweig

- Unstructured grids, especially non-trivial topology for coupling interface [Ansanay-Alex et al. 2011, Verboven et al. 2006]
- Model adaptivity
- Reconsider Beavers-Joseph condition
- Really decouple domains, iterative coupling [Discacciati 2004]
- Use explicit method in Navier-Stokes
- Couple with different software tools like OpenFOAM
- Scale effects up


## Backup

Mass and momentum balance equations

Navier-Stokes mass balance equation

$$
\frac{\partial}{\partial t} \varrho+\operatorname{div}(\varrho v)-q_{p}=0
$$

Navier-Stokes momentum balance equation

$$
\frac{\partial}{\partial t}(\varrho v)+\operatorname{div}\left(\varrho v v^{\boldsymbol{\top}}\right)-\operatorname{div}(\varrho \nu \nabla v)+\nabla p-\varrho g-q_{v}=0
$$

Darcy flow equation

$$
\Phi \frac{\partial}{\partial t}(\varrho S)-\operatorname{div}\left(\frac{K}{\nu}(\nabla p-\varrho g)\right)-q_{\mathrm{pm}}=0
$$

Backup<br>additional free flow equations

energy balance equation

$$
\frac{\partial}{\partial t}(\varrho u)+\operatorname{div}(\varrho v h-\lambda \nabla T)=q_{T}
$$

## transport equation

$$
\frac{\partial}{\partial t}(\varrho X)+\operatorname{div}\left(\varrho v X-D_{\text {steam }} \varrho \nabla X\right)=q_{\text {steam }}
$$

## Backup

additional Darcy flow equations
energy balance equation

$$
\begin{aligned}
& \sum_{\alpha \in\{\mathrm{g}, \mid\}} \Phi \frac{\partial}{\partial t}\left(\varrho_{\alpha} u_{\alpha}^{\kappa} S_{\alpha}\right)+(1-\Phi) \frac{\partial}{\partial t}\left(\varrho_{\mathrm{pm}} c_{\mathrm{pm}} T\right) \\
& \quad+\operatorname{div}\left(\sum_{\alpha \in\{\mathrm{g}, \mid\}} \varrho_{\alpha} h_{\alpha} v_{\alpha}-\lambda_{\mathrm{pm}} \nabla T\right)=q_{T}
\end{aligned}
$$

transport equation

$$
\begin{array}{r}
\sum_{\alpha \in\{\mathrm{g}, \mathrm{l}\}} \Phi \frac{\partial}{\partial t}\left(\varrho_{\alpha} X_{\alpha}^{\kappa} S_{\alpha}\right)+\operatorname{div}\left(\sum_{\alpha \in\{\mathrm{g}, \mathrm{l}\}}\left(\varrho_{\alpha} v_{\alpha} X_{\alpha}^{\kappa}-D_{\alpha, \mathrm{pm}}^{\kappa} \varrho_{\alpha} \nabla X_{\alpha}^{\kappa}\right)\right) \\
=\sum_{\alpha \in\{\mathrm{g}, \mid\}} q_{\alpha}^{\kappa}
\end{array}
$$

## Backup

coupling conditions for thermal equilibrium
temperature continuity, heat flux continuity

$$
\begin{aligned}
(T)_{\mathrm{ff}} & =(T)_{\mathrm{pm}} \\
n \cdot(\varrho v h-\lambda \nabla T)_{\mathrm{ff}} & =-n \cdot\left(\varrho_{\mathrm{g}} v_{\mathrm{g}} h_{\mathrm{g}}+\varrho_{\varrho} v_{\mathrm{l}} h_{\mathrm{l}}-\lambda_{\mathrm{pm}} \nabla T\right)_{\mathrm{pm}}
\end{aligned}
$$

## Backup

coupling conditions for chemical equilibrium
continuity of mass fractions, continuity of the component fluxes

$$
\begin{align*}
\left(X^{\kappa}\right)_{\mathrm{ff}} & =\left(X_{\mathrm{g}}^{\kappa}\right)_{\mathrm{pm}} \\
n \cdot\left(\varrho v X^{\kappa}-D \varrho \nabla X^{\kappa}\right)_{\mathrm{ff}} & =-n \cdot\left(\sum_{\alpha \in\{\mathrm{g}, \mathrm{l}\}}\left(\varrho_{\alpha} v_{\alpha} X_{\alpha}^{\kappa}-D_{\alpha, \mathrm{pm}} \varrho_{\alpha} \nabla X_{\alpha}^{\kappa}\right)\right)_{\mathrm{pm}} \tag{2}
\end{align*}
$$

