
Experiences using 2decomp&fft to solve
Partial Differential Equations using Fourier

Spectral Methods

Sudarshan Balakrishnan, Abdullah H. Bargash, Gong Chen,
Brandon Cloutier, Ning Li, Dave Malicke, Benson Muite,
Michael Quell, Paul Rigge, Damian San Román Alerigi
Mamdouh Solimani, Andre Souza, Abdulaziz S.Thiban,

Mark Van Moer, Jeremy West

Tartu Ülikool
benson.muite@ut.ee

http://math.ut.ee/˜benson
http:

//en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods

14 July 2014

benson.muite@ut.ee
http://math.ut.ee/~benson
http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods
http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods

Outline

Project Aim
Fourier Series
The Heat Equation
The Allen Cahn Equation
The Gray-Scott Equations
Nonlinear Schrödinger Equation
Navier-Stokes Equation
Maxwell’s Equations
Possible Further Work

Project Aim

Teaching tool for use in mathematics and computer science
courses from 1st year undergraduate to postgraduate level
Research tool: investigate partial differential equations,
investigate computer performance
Help paper reproducibility and verifiability
Reduce coding time
Rely on 2decomp&fft for MPI parallelization
(http://2decomp.org)
Material has been tested in a course on Multivariable
calculus and on an introduction to partial differential
equations

http://2decomp.org

Fourier series: Separation of Variables 1

dy
dt

= y (1)

dy
y

= dt (2)∫
dy
y

=

∫
dt (3)

ln y + a = t + b (4)
eln y+a = et+b (5)
eln yea = eteb (6)

y =
eb

ea et (7)

y(t) = cet . (8)

Fourier series: Separation of Variables 2

ut = uxx (9)

Suppose u = X (x)T (t)

dT
dt (t)
T (t)

=
d2X
dx2 (x)

X (x)
= −C, (10)

Solving each of these separately and then using linearity
we get a general solution

∑
n

αn exp(−Cnt) sin(
√

Cnx) + βn exp(−Cnt) cos(
√

Cnx)

(11)

Fourier series: Separation of Variables 3

How do we find a particular solution?
Suppose u(x , t = 0) = f (x)

Suppose u(0, t) = u(2π, t) and ux (0, t) = ux (2π, t) then
recall

∫ 2π

0
sin(nx) sin(mx) =

{
π m = n
0 m 6= n

, (12)∫ 2π

0
cos(nx) cos(mx) =

{
π m = n
0 m 6= n

, (13)∫ 2π

0
cos(nx) sin(mx) = 0. (14)

Fourier series: Separation of Variables 4

So if
f (x) =

∑
n

αn sin(nx) + βn cos(nx). (15)

then

αn =

∫ 2π
0 f (x) sin(nx)dx∫ 2π

0 sin2(nx)dx
(16)

βn =

∫ 2π
0 f (x) cos(nx)dx∫ 2π

0 cos2(nx)dx
. (17)

and

u(x , t) =
∑

n

exp(−n2t) [αn sin(nx) + βn cos(nx)] (18)

The Fast Fourier Transform allows one to find good
approximations to αn and βn when the solution is found at
a finite number of evenly spaced grid points

The 1D Heat Equation: Finding derivatives and
timestepping

Let
u(x) =

∑
k

ûk exp(ikx) (19)

then
dνu
dxν

=
∑

(ik)ν ûk . (20)

Consider ut = uxx , which is approximated by

∂ûk

∂t
= α(ik)2ûk (21)

ûn+1
k − ûn

k
h

= α(ik)2ûn+1
k (22)

ûn+1
k (1− αh(ik)2) = ûn

k (23)

ûn+1
k =

ûn
k

(1− αh(ik)2)
. (24)

The 2D Allen Cahn Equation

Consider ut = ε(uxx + uyy) + u − u3, which is approximated
by

∂û
∂t

= ε
[
(ikx)2 + (iky)2

]
û + û − û3 (25)

ûn+1 − ûn

h
= ε

[
(ikx)2 + (iky)2

]
ˆun+1 + ûn − ˆ(un)3(26)

The 3D Gray-Scott Equations

∂u
∂t

= Du∆u + α (1− u)− uv2, (27)

∂v
∂t

= Dv ∆v − βv + uv2. (28)

Solved using a splitting method (More information on
splitting for this at
http://arxiv.org/abs/1310.3901)
http://web.student.tuwien.ac.at/˜e1226394/

http://arxiv.org/abs/1310.3901
http://web.student.tuwien.ac.at/~e1226394/

The 2D nonlinear Schrödinger Equation

iψt + ψxx + ψyy = |ψ|2ψ

Solved using Fast Fourier Transform and splitting

The 2D nonlinear Schrödinger Equation

Table: Computation times in seconds for 20 time steps of 10−5 for a
Fourier split step method for the cubic nonlinear Schrödinger
equation on [−5π,5π]2.

Grid GPU GPU GPU Xeon Phi CPU
Size (Cuf) (Cuda) (OpenACC) (61 cores) (1 core)
2562 0.00802 0.0116 0.0130 0.0122 0.442
5122 0.0234 0.0315 0.0369 0.0291 1.94

10242 0.0851 0.105 0.132 0.118 12.7
20482 0.334 0.415 0.527 0.422 57.2
40962 1.49 2.02 2.30 1.626 329

The Real Cubic Klein-Gordon Equation

utt −∆u + u = |u|2u (29)

E(u,ut) =

∫
1
2
|ut |2 +

1
2
|u|2 +

1
2
|∇u|2 − 1

4
|u|4 dx (30)

un+1 − 2un + un−1

(δt)2 −∆
un+1 + 2un + un−1

4
+

un+1 + 2un + un−1

4
(31)

= ±
∣∣un∣∣2 un (32)

Parallelization done using 2decomp library for FFT and
processing independent loops
Other time stepping algorithms possible, including splitting

Simulations and Videos by Brian Leu, Albert Liu, and
Parth Sheth

104 105 106

Number of Cores

100

101

102

C
o
m
p
u
ta
ti
o
n
 T
im

e
 (
s)

Measured
Ideal

Figure: Strong scaling on Mira for a 40963 discretization.

http://www-personal.umich.edu/˜alberliu/
http://www-personal.umich.edu/˜brianleu/
http://www-personal.umich.edu/˜pssheth/

http://www-personal.umich.edu/~alberliu/
http://www-personal.umich.edu/~brianleu/
http://www-personal.umich.edu/~pssheth/

The 2D and 3D Navier Stokes Equation

Consider incompressible case only

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + µ∆u (33)

∇ · u = 0. (34)

p pressure, µ viscosity, ρ, density
2D u(x , y) = (u(x , y), v(x , y))

3D u(x , y , z) = (u(x , y , z), v(x , y , z),w(x , y , z))

2D Vorticity-Streamfunction Formulation

ω = ∇× u =
∂v
∂x
− ∂u
∂y

= −∆ψ

ρ

(
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y

)
= µ∆ω (35)

and

∆ψ = −ω. (36)

Time Discretization

ρ

[
ωn+1,k+1 − ωn

δt
(37)

+
1
2

(
un+1,k ∂ω

n+1,k

∂x
+ vn+1,k ∂ω

n+1,k

∂y
+ un ∂ω

n

∂x
+ vn ∂ω

n

∂y

)]
=
µ

2
∆
(
ωn+1,k+1 + ωn

)
,

and

∆ψn+1,k+1 = −ωn+1,k+1, (38)

un+1,k+1 =
∂ψn+1,k+1

∂y
, vn+1,k+1 = −∂ψ

n+1,k+1

∂x
. (39)

Fixed point iteration used to obtain nonlinear terms

Example Videos

http://www-personal.umich.edu/˜cloutbra/
research.html

Simulations on a single NVIDIA Fermi GPU about 20 times
faster than a 16 core CPU

http://www-personal.umich.edu/~cloutbra/research.html
http://www-personal.umich.edu/~cloutbra/research.html

3D Equivalent Formulation

Simplification of equation with periodic boundary
conditions

ρ
(
∂u
∂t + u · ∇u

)
= −∇p + µ∆u (40)

∇ · u = 0 (41)
so

∇ ·
[
ρ
(
∂u
∂t + u · ∇u

)]
= ∇ · [−∇p + µ∆u] (42)

ρ∇ · (u · ∇u) = −∆p (43)
p = ∆−1 [∇ · (u · ∇u)] (44)

so
ρ
(
∂u
∂t + u · ∇u

)
= −ρ∇

(
∆−1 [∇ · (u · ∇u)]

)
+ µ∆u (45)

3D Equivalent Formulation - Implicit Midpoint Time
Discretization

ρ

[
un+1,j+1 − un

δt
+

un+1,j + un

2
· ∇
(

un+1,j + un

2

)]
= ρ
∇
[
∆−1 (∇ · [(un+1,j + un) · ∇(un+1,j + un)

])]
4

+ µ∆
un+1,j+1 + un

2
,

Video of Taylor Green Vortex
http://vimeo.com/87981782

http://vimeo.com/87981782

3D Equivalent Formulation - Carpenter-Kennedy
Discretization

1: procedure RUNGE–KUTTA(u)
2: h = 0
3: u = un

4: for k = 1→ 5 do
5: h← g(u) + βkh
6: µ = 0.5δt(αk+1 − αk)
7: v− µl(v) = u + γkδth + µl(u)
8: u← v
9: end for

10: un+1 = u
11: end procedure

Performance

δt = 0.005 for 5123 and δt = 0.01 for 2563 grid points.
For IMR scheme, fixed point iteration procedure was
stopped once the difference between two successive
iterates was less than 10−10 in l∞ norm of velocity fields.

Method Grid Size Cores Time Steps Time (s) Core Hours
Timestep

IMR 2563 512 1000 4060 0.578
IMR 5123 1024 500 9899 5.68
CK 5123 4096 2000 7040 4.0

Table: Performance of Fourier pseudospectral code on Shaheen.
IMR is an abbreviation for implicit midpoint rule and CK is an
abbreviation for Carpenter–Kennedy.

Kinetic Energy Evolution

0 2 4 6 8 10

0.08

0.09

0.1

0.11

0.12

0.13

Time

En
er

gy

Kinetic Energy

IMR 256
IMR 512
CK 512
Reference

Figure: KE of solutions are so close they are almost indistinguishable

Kinetic Energy Dissipation Rate

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time

En
er

gy
 D

is
si

pa
tio

n
R

at
e

Kinetic Energy Dissipation Rate

IMR 256
IMR 512
CK 512
Reference

Figure: Plot during the initial stage, where flow is essentially inviscid
and laminar. Fully developed turbulent flow is observed around
tmax ≈ 8.

Kinetic Energy Dissipation Rate

0 2 4 6 8 10−5

0

5

10

15 x 10−4

Time

En
er

gy
 D

is
si

pa
tio

n
R

at
e

Kinetic Energy Dissipation Rate

IMR 256 − Reference
IMR 512 − Reference
CK 512 − Reference

Figure: Difference in kinetic energy dissipation rates between the
current discretizations and the reference solution.

Vorticity

Figure: Square of the vorticity in the plane centered at (π,0,0) with
normal vector (1,0,0).

Discrete energy equality for midpoint rule

‖u(t = T)‖2l2 − ‖u(t = 0)‖2l2 = −µ
∫ T

0
‖∇u‖2l2dt

‖uN‖2l2 − ‖u
0‖2l2 = −µ

4

N−1∑
n=0

∥∥∥∇(Un + Un+1
)∥∥∥2

l2
δt .

Conclusion on Navier Stokes Equations

At almost the same computational cost, both 2nd-order
accurate IMR and 4th-order Carpenter-Kennedy time
stepping method, capture same amount of detail of the
flow for 5123.
Simulations with 2563 grid points resulted in poor spatial
convergences.

The 3D Maxwell’s Equations

~Dt −∇× ~H = 0

~Bt +∇× ~E = 0

with the relation between the electromagnetic components
given by the constitutive relations:

~D = εo(x , y , z)~E

~B = µo(x , y , z)~H

Maxwell Simulation http://vimeo.com/71822380

http://vimeo.com/71822380

Further Work

Integration with other codes or simple examples for other
spatial discretizations (one other example
https://code.google.com/p/incompact3d/)
Uniform interface for users with no programming
background
“Use MPI” vs. “Include mpif.h”
C/C++ examples
Better archiving and documentation procedure – currently
wikibooks + github
Integration with accelerators
Integration with visualization tools
Magnetohydrodynamics

Conclusion

Easy to program numerical method which can be used to
study semilinear partial differential equations
Method parallelizes well on hardware with good
communications so a good tool to introduce parallel
programming ideas
Research tool to investigate and provide conjectures for
behavior of solutions to partial differential equations
Research tool to investigate computer hardware
performance and correctness
Better user interface and integration with visualization
would help make it easier for those without strong
programming backgrounds

Acknowledgements

This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.
This research used the resources of the Supercomputing
Laboratory at King Abdullah University of Science and
Technology.
This research used resources of the Keeneland Computing
Facility at the Georgia Institute of Technology, which is
supported by the National Science Foundation under
Contract OCI-0910735.
This material is based upon work supported by the
National Science Foundation under Grant Number
1137097 and by the University of Tennessee through the
Beacon Project.

Acknowledgements and References

W. Auzinger, O. Batrashev, K. Hillewaert, D. Ketcheson, O. Koch, B.
Leu, A. Liu, B. Palen, M. Parsani, W. Schlag, P. Sheth, M. Warnez

The Blue Waters Undergraduate Petascale Education Program
administered by the Shodor foundation

The Division of Literature, Sciences and Arts at the University of
Michigan

Carpenter M.H. and Kennedy C. A. “Fourth-Order 2N-Storage
Runge–Kutta schemes” NASA Langley Research Center Technical
Memorandum 109112, (1994).

http://en.wikibooks.org/wiki/Parallel_Spectral_
Numerical_Methods

http://2decomp.org

Beamer https://en.wikipedia.org/wiki/Beamer_(LaTeX)

http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods
http://en.wikibooks.org/wiki/Parallel_Spectral_Numerical_Methods
http://2decomp.org
https://en.wikipedia.org/wiki/Beamer_(LaTeX)

